تحتوي هذه المقالة اصطلاحات معربة غير مُوثَّقة. لا تشمل ويكيبيديا العربية الأبحاث الأصيلة، ويلزم أن تُرفق كل معلومة فيها بمصدر موثوق به. (أكتوبر 2015) |

في الطوبولوجيا والمجالات المتعلقة بها من الرياضيات، تُسمّى الثنائيةَ (E, T) فضاءً طوبولوجياً، حيث E مجموعة ما وT مجموعةٌ عناصرها هي مجموعات جزئية لِ E، إذا تحققت الخاصياتُ الثلاثة الآتية مجتمعةً:
- الفراغُ والشمولُ: المجموعة الفارغة Ø و E عضوان في T.[1][2][3]
- الوَصْل: أيُ اتحادٍ لأعضاء من T ينتمي لِ T (إن كان نهائياً أو غير نهائي).
- البَيْن: تقاطع أي مجموعتين من T ينتمي هو أيضا لِـ T (ليس ضروريا أن ينتمي تقاطع عدد لا نهائي من المجموعات من داخل T إلى T).
و في هذه الحالة نسمي T طوبولوجيّةً الفضاء، والمجموعات الأعضاء فيها نسميهن المجموعات المفتوحة في الفضاء. مجموعةٌ التي مكَمّلتها مجموعة مفتوحة تُسمّى مجموعة مغلقة.
التاريخ
في حوالي عام 1735 م، اكتشف ليونهارد أويلر الصيغة ، والمتعلقة بعدد رؤوس (V) متعدد للأوجه مقعر، وعدد أضلاعه (E) وعدد سطوحه (F). أدت دراسة وتعميمات هذه الصيغة، خصوصا من طرف عالمي الرياضيات كوشي (1789 - 1857) و سيمون انطوان جان لولييه (1750 - 1840)، إلى دراسة معمقة للطوبولوجيا بأكملها. في عام 1827، نشر عالم الرياضيات الألماني كارل فريدريش غاوس كتابا عنوانه أبحاث عامة حول المساحات المنحنية.
أمثلة
لأي فضاء E يمكننا تعريف طوبولوجية عليه {T={E, Ø. ومن الواضح أن هذه المجموعة تحقق كل الشروط المبيَّنة أعلاه. هذا النوع من الطوبولوجيات يسمّى الطوبولوجية البديهية.
لأي فضاء E يمكننا أيضا تعريف طوبولوجية عليه (T=P(E. أي, طوبولوجية التي فيها كل مجموعة جزية للفضاء E هي مجموعة مفتوحة. ومن الواضح, في هذه الحالة أيضا, أن هذه المجموعة تحقق كل الشروط المبيَّنة أعلاه, ولذلك هي طوبولوجية حسب التعريف. هذا النوع من الطوبولوجيات يسمّى الطوبولوجية المنفردة.
تعريفات مكافئة
انظر أيضا
مراجع
- ^ "معلومات عن فضاء طوبولوجي على موقع id.loc.gov". id.loc.gov. مؤرشف من الأصل في 2020-02-07.
- ^ "معلومات عن فضاء طوبولوجي على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2020-05-11.
- ^ "معلومات عن فضاء طوبولوجي على موقع britannica.com". britannica.com. مؤرشف من الأصل في 2016-03-10.